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ABSTRACT

Collaborative learning is used in multi-media applications
to distribute computing tasks and data storage over multiple
sites. Recent studies found that private data information can
be derived from model updates between the server and clients.
Yet, previous methods are limited by their capabilities of pri-
vacy inference in more general and practical situations. In
this paper, we propose a novel property inference method in
the deep feature space to overcome those limitations. In par-
ticular, our method can make inference decisions on the level
of individual examples instead of a batch of examples. We
can simultaneously perform multiple property inference at-
tacks without the need of image reconstruction. The proposed
method is evaluated on several image benchmark datasets,
which demonstrates significant improvement of inference ac-
curacy even in the presence of privacy protection schemes.

Index Terms— Collaborative learning, privacy, property
inference, gradient leakage

1. INTRODUCTION

With excessive data collection and extending collaborations,
the conventional approach of centralized learning is facing
bottleneck issues in data management, network communica-
tion, privacy protection and increasing demands for process-
ing. To combat these problems, decentralized learning tech-
niques are proposed as an alternative way to distribute com-
puting tasks and data storage over multiple sides. Most no-
tably is federated learning [1] which is a type of collabora-
tive learning (CL) schemes that have been used in multimedia
systems such as object detection [2], video analysis [3], and
speech recognition [4]. In such context, CL is considered pri-
vacy protective as the private data are processed locally and
do not leave the remote client devices.

However, recent studies showed that it is still possible to
infer private information from model abstractions [5, 6, 7].
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According to the goal of adversaries, there can be three types
of privacy attacks in the context of CL [8]: 1) sample re-
construction, 2) membership inference, and 3) property in-
ference. Sample reconstruction intends to reconstruct one or
more training samples and/or their respective labels from a
pre-trained model. Membership inference tries to determine
whether sample x was part of a training set D. Property in-
ference extracts auxiliary information from the target model,
e.g., the ratio of women and men or the age information in
a patient dataset, when such information was not an encoded
attribute or a label.

Yet, previous methods are limited by their capabilities of
privacy inference in more general and practical situations.
Sample reconstruction may be used as a stepping stone be-
fore mounting inference attacks by reconstructing the actual
data sample [5, 9, 10, 11]. Recently, [5] proposes deep leak-
age from gradients (DLG) for image reconstruction based on
gradient inversion. [9, 10, 11] improve DLG respectively
by different gradient matching function, BatchNorm layer’s
statistics and a pretrained generator. However, these meth-
ods were limited by efficiency and generalization due to the
complexity. There are score-based and direct-gradient-based
methods that do not require image reconstruction to make in-
ference but have their own limitations. [12] try to infer the
input data information by the model output. However, the
malicious user is allowed to manipulate the system by adapt-
ing model parameters and communication properties (a.k.a.
active attacks). This is not applicable in our context of CL
where adversaries is assumed curious-but-honest who can
only observe but not interfere with the training process (a.k.a.
passive attacks). [7] draws meta-characteristics of the train-
ing dataset from gradient updates of client model parameters
without sample reconstruction. However, the attack can only
decide whether a particular property occurs in a mini-batch
data instead of judging for individual data samples.

Previous methods are either limited by their capacity of
privacy inference in more general and practical situations or
cannot make inference on individual examples. We aim to re-
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solve these problems in this paper. In particular, we note that
reconstruction-based methods are developed often with an ob-
jective of improving the visual quality and image fidelity at
the pixel level. Whereas this is not necessary for property in-
ference tasks in most scenarios. Inspired from transfer learn-
ing, we propose a novel inference approach by reconstructing
samples in the deep feature space that can take the advantages
of both reconstruction-based and gradient-based methods.
Our main contributions are as follows.

* We demonstrate privacy leakage in the deep feature
space and show that high-level feature learned for the
model’s main task also encode unintended information
that is sufficient to make inference of private data.

* We propose a novel deep feature reconstruction method
by using data-specific gradients in such a way that the
reconstruction performance is not affected by the mini-
batch size of client updates in CL.

* We design deep feature-based inference algorithms that
perform property inference attack for individual sam-
ple. Performance evaluations show that our method can
better cope with imbalanced property data in the client
updates and cross-dataset inference.

2. THREAT MODEL

In this paper, we consider the general framework of CL by
assuming K clients with a common learning task of image
classification and training collaboratively for a shared model
by synchronous SGD (s-SGD)[13] on the server S.

2.1. Attack Semantics

We follow the practice in [5] to allow only gradients and their
updates sent to the server from local clients. The server may
use a pre-trained model to initialize the shared model param-
eters W (9. At the ¢-th iteration, parameters of the shared
model W *) are downloaded from the server to clients. Each
client then trains the model on a new batch sampled from its
local dataset at the client device. Local gradient updates of the
client model k, denoted by g,(:) for k = 1,2,..., K, are sent
back to the server for updating the shared model by s-SGD:

K
m
W — w7 Tk gl (1)
k=1

where my, is the mini-batch size for each local update by
client k and M is total size of the training data. 7 is the learn-
ing rate of CL.

2.2. Curious-but-honest Server

In this paper, we assume a malicious server who is curious-
but-honest. That is, the server may derive client-private in-
formation without interfering the collaborative training nor
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Fig. 1. Visualizations of 1,000 face images from the CelebA
dataset [15] produced by t-SNE of deep features extracted
from the last convolution layer of a shared model (a) at the
beginning (i.e., t = 0) with random initialization, and (b) at
the end (e.g., ¢ = 20) of CL in the s-SGD setting.

affecting the model prediction performance. In addition to
gradient updates from clients, the adversarial server may also
exploit an auxiliary dataset D,,, commonly used for pre-
training and quality assessments in the CL routines [14]. For
the purpose of evaluations, the additional data must have the
same distribution as the meta-data population.

3. PROPOSED METHOD

In this section, we first investigate privacy leakage in the deep
space, i.e., whether the unintended information, e.g., gender
or age group, is encoded in high-level feature representations
learned for the main training task, e.g., face recognition, that
is different from the inference task. Accordingly, we design
a gradient inversion algorithm for deep feature reconstruction
of individual examples. Then, we propose a unified frame-
work that can construct several properties inference simulta-
neously in the deep feature space.

3.1. Privacy Leakage in Deep Space

In the study of transfer learning [16], it is well known that fea-
tures learned on task A can be used for another task B to some
extent, and that initializing a network with transferred fea-
tures can improve generalization that lingers even after fine-
tuning to the target dataset. This has motivated us to study
privacy leakage in the deep space as high-level features may
be exploited to perform a secondary tasks. To that end, we
shall first corroborate that high-level feature representations
do encode the unintended information unrelated to the main
task of learning.

We design an experiment by training a CNN model of
face recognition in the framework of CL. We use ¢-distributed
Stochastic Neighbor Embedding (¢-SNE) [17] to visualize
any implicit data structure in the deep space, which con-
verts the high-dimensional Euclidean distances between data
points into conditional probabilities that present similarities.
Fig. 1 (a) plots the ¢-SNE map for the random features when
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Fig. 2. Proposed deep feature reconstruction on CNN.

t = 0 at the beginning of CL. It can be seen that the data
points are almost uniformly distributed in the manifold re-
gardless of the gender class.

We then start the collaborative training of the shared CNN
model on the CelebA dataset [15]. As the round of CL in-
creases, the shared model is updated with actual information
learned from more data samples. Fig. 1 (b) plots the ¢-SNE
map for the deep features extracted from the last convolution
layer of the CNN at the end of CL (i.e., t=20). It can be seen
clearly that the data points are clustered with respect to the
two gender classes even though the gender information is not
provided to the CNN model during the entire process of CL.
This is an inadvertent leak of data property information (e.g.,
gender in this case) in the deep space.

3.2. Deep Feature Reconstruction

In the previous section, we show that there is auxiliary infor-
mation encoded in the deep features even if they are learned
for another task independent of the unintended information.
This enables us to make privacy inference for individual ex-
amples in the deep feature space and eliminates visual quality
issues that affect inference performance at the pixel level.

Fig. 2 illustrates the proposed scheme of deep feature
reconstruction. The CNN model in general can be divided
into two parts. The first part is a feature extractor that learns
the deep feature representation of an input image, denoted by
E(X), followed by a classifier C' with the decision function
fe designed for the main task of CNN. Without loss of gener-
ality, we assume n blocks of convolution layers in F, denoted
by fi1, f2, .-+, fn, respectively. In particular, f, produces the
last-layer features F(X).

Fig. 1 plots the ¢-SNE maps using E(X ), which shows
that E(X) can be used to make inference. In cases when
the difference between the main and auxiliary tasks increases,
one may resort to lower-layer features as they have more gen-
eral information [16]. However, this tends to be more affected
by the actual network architecture such as batch normaliza-
tion, activation function, and etc. As more layers are involved,
it will increase not only the time complexity but also recon-
struction errors. In our experience, we found that the use of
last-layer features E'(X) is sufficient for the property infer-
ences over all experimented datasets presented in this paper.

Following the premises of CL, the server sends the shared

model to each client at the beginning of each round CL, and
updated by s-SGD using the client gradient updates g,(f) in
multiple rounds of CL. For conciseness and the ease of pre-
sentation, we drop the subscript & and superscript (t) in g,(:)
hereafter for a particular client update in a round. Thus, we
have data-specific gradients g = [g1, g2, -+, gn, ) for updat-
ing model parameters by (1) of the corresponding blocks, i.e.,
f1, foy s fr, fe, in Fig. 2.

We propose to reconstruct the last-layer features F(X)
from g specific to the mini-batch data of a client. As shown
in Fig. 2, we randomly initialize a pair of dummy data (Z, ),
where z is the dummy features and y is a dummy label. The
batch size of (Z,7) is the same as the mini-batch size of a
client. We then inject (&, §) into a copy of the shared model
to learn dummy gradients by backward propagation of f. and

fn, respectively, i.e.,

ge = foLCE [fc (fn<3~9)) ag] ()

and
gn = Vf,,L£CE [fc (fn(-%)) ) :‘7] ) (3)

where Lcg is the cross-entropy loss function. We intend to
match these dummy gradients to the data-specific gradients
for actual shared model updates received from the client.
Therefore, we design the objective function as

L=\ d(gn,dn) +d(ge, je) )

where A = 0.1 and the difference between the dummy gradi-
ents g and data-specific gradients g is measured by

(9,9)

d(9.9) = (1 - M> ’ <1 o (W>(>5)

which contains two terms. The first term is a cosine similarity
distance. The second term is a Gaussian kernel based function
with 02 = Var(g). The latter is introduced because § < g
in many cases and thus the normal [, distance is problematic
especially at the early stages. We can obtain the best (Z*, §*)
by minimizing Eq. (4) with

(i'j+17 gj-i-l) = (i‘ja ?j]) —a- v(ij’ﬂj)‘c(i‘ja ?j]) (6)

for a number of iterations. We empirically set the learning
rate o = 0.1. The last-layer deep features of every individual
samples in the batch can be computed from the best dummy
features as

E(X) = ful&) )

Note that we use two data-specific gradients in the client
update, i.e., g. and g,, correspond to the classifier block f. and
the last convolution block f,,. This has enabled us to use both
backward and forward propagations for estimating F(X), as
shown in Fig. 2. We shall demonstrate later in the Section 4.3
that the inclusion of g,, plays an important role in stabilizing
the inference accuracy when increasing the batch size.



3.3. Deep Feature-based Property Inference Attacks

Assume that the adversary has the auxiliary dataset D, and
data-specific gradients g,(:) updated from client & using the
mini batch of private dataset Dy, in the ¢-th round of CL. The
adversary can estimate the deep features of client mini-batch
data from g,(:), i.e., E(X) for X € Dy, as shown in the previ-

ous section. He can also compute the deep features of samples
in D,yy, denoted by E(Z) where Z € D,,x. Given g,(:), the
adversarial goal is to decide if any X € D, has the specific
property p. We can label Z € D,,, with p and use pairs
of the supervised data (E(Z),p) to train a property inference
model f,. We then use f;, to predict the property label of
E(X) reconstructed from gl(f) for individual samples in the
mini batch to perform property inference.

4. PERFORMANCE EVALUATIONS

Datasets. We use a number of image benchmark datasets for
performance evaluations. All the images are cropped to re-
move background and resize to 64 x 64. The datasets are

1) The CelebA Dataset contains 202,599 face images of
10,177 identities and with 40 labelled attributes. We use the
first 1000 identities containing 21,152 images.

2) Large-scale Attribute Dataset (LAD) [18] has 78,017
images of 5 super-classes with 359 labelled attributes. We use
the superclass of vehicles (LAD-Vehicles) containing 13,290
images of 50 categories.

3) CUB-200-2011[19] has total 11,788 images of 200 cat-
egories birds with 312 labelled attributes.

4) Pubfig83[20] has 13,838 face images of 83 identities

picking from Pubfig[21] dataset with 73 labelled attributes.
Models. We use ResNet-18 [22] for the shared model in the
setting of CL. For the property inference model f,,, we use a
two-layer fully connected (FC) neural network with 1024 and
512 hidden units and drop-out layer.
Experimental Setting. Unless otherwise specified, the mini-
batch size is set to 64 and the number of clients in CL is set
to 5. An Adam optimizer is used for training the inference
model f, with a learning rate of 0.0001 for 50 epochs.

4.1. Property Inference

Comparing with Reconstruction Based Methods.

Our method is not limited to small mini-batch size for
model updates, which is a significant advantage. Existing
reconstruction-based methods, such as DLGI[5], Inverting-
Gradients (IG) [9] and GradInversion[10], in general require
very small batch size in order to be functional. Fig. 3 shows
some examples. When batchsize is set to 1, the tested meth-
ods are able to reconstruct the image example in an update
with high fidelity. However, the reconstruction results be-
come hardly visible when batchsize is increased to only 8§,

Ground truth Batchsize=1 Batchsize=8
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Fig. 3. Image reconstruction with different batchsize: (a)
Ground truth from CelebA, (b) and (d) results by DLG[5],
(c) and (e) results by Gradlnversion[10].

Table 1. The gender inference accuracy (in %) on CelebA at
different mini-batch size for training updates.

Batchsize DLG IG GradInversion Proposed
1 93.12 94.86 94.79 95.35
8 50.00 67.34 52.34 95.42
32 50.00 54.31 73.23 95.49

which is considered too small for most machine learning
models nowadays.

On the other hand, the proposed inference method recon-
structs samples in the deep feature space and is not affected
as much by the choice of mini-batch size. Table 1 shows the
gender inference accuracy on CelebA. It can be seen that our
feature-based method is able to retain the inference perfor-
mance as batchsize increases. We also show the reconstructed
performance under different batch sizes in Section 4.3.
Comparing with Non-Reconstruction Based Methods.

Table 2 presents the accuracy of inferring different data
properties from client updates on CelebA, LAD-Vehicles
and CUB-200-2011, respectively. Specifically, Unintended
Leakage(UL)[7] trains a property inference model using gra-
dient updates, while Honest-but-curious nets(tHCN)[12] is a
score-based method. The latter is an active attack by having
interfered with the training process in order to encode auxil-
iary information in the output scores.

In all tested scenarios of Table 2, it can be seen that the
proposed feature-based method is able to achieve a significant
performance gain up to 14.5% and 7.7% comparing with UL
and HCN, respectively. Note that our method is a passive
attack that is in general more difficult and thus tends to have
lower inference accuracy than an active attack such as HCN.
Imbalanced Property Data.

UL[7] can only test if data with a specific property occurs
in a mini-batch but cannot decide which sample has that prop-
erty, because the inference model is trained using the average
gradient of mini-batch updates. This can be problematic when
the number of data samples with the property is significantly
decreased in the mini batch, a.k.a. imbalanced property data.
Fig. 4 shows the effect by plotting the F1 score of inference



Table 2. Property inference accuracy (in %) by comparing
with two non-reconstruction based methods.

Dataset Property UL  HCN  Proposed
Gender 87.01 92.72 95.75
coma Gl S014 % s
Young  65.83 73.47 81.18
LAD Wheel 91.13  92.62 96.13
CUB Beak 66.45 68.93 75.08

Table 3. Property inference accuracy using cross-datasets.

Method  Gender Glasses Smile Young
UL 74.14 50.00 50.00 50.00
HCN 72.04 50.20  53.23  50.00
Proposed  89.63 82.29 7644 65.90
o, R
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Fig. 4. Inference accuracy of gender w.r.t. the ratio of male vs.
female in every client mini-batch data sampled from CelebA.

accuracy on CelebA w.r.t. the ratio of male vs. female sam-
ples in every mini-batch training data of clients sampled from
CelebA. All three comparing methods perform similarly at
the beginning when the ratio is 1:1. As the ratio of male
samples decreases, the inference accuracy of [7] drops sig-
nificantly to half whereas the proposed and the score-based
methods retain performance even with imbalanced property
data. Note that the latter two are both privacy attacks that can
work on individual examples.

Cross-Dataset Inference.

Most existing methods, including [7] and [12], require an
auxiliary dataset to learn a property inference model. More-
over, the auxiliary dataset must have supervised information
of the main task as well as the same data distribution as the
client training data. Whereas in our feature reconstruction
method, we use the reconstructed deep feature to perform in-
ference attack. Thus, we do not require accurate supervised
information of the main task to build the property inference
model. This gives our method great flexibility, especially in
cross-dataset scenarios, e.g., when the auxiliary dataset D,
is not available for training the inference model f,,.

Table 3 evaluates the inference accuracy using cross-
datasets. Specifically, the property inference model is trained
on Pubfig83 and then tested with gradient updates of local
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Fig. 6. Feature reconstruction by client gradient updates.

clients generated on CelebA. It can be seen that the pro-
posed feature-based inference method is able to achieve sig-
nificantly higher inference accuracy comparing with the other
two methods. The gain of performance is at least 15% in all
cases for cross-dataset inference in Table 3.

4.2. Inference Against Defence

We also evaluate the inference methods in the presence of two
popular privacy protection schemes, namely differential pri-
vacy (DP) [23] and a privacy-aware technique by sharing less
gradient (Sharing) in the setting of CL [24]. The amount of
DP noise and ratio of sharing gradient relevant to the sensitiv-
ity. Thus, we can change the noise variance and the ratio of
gradient sharing to control the trade-off between privacy and
utility. In Fig. 5, we plot the model accuracy in terms of the
main task for image classification in the presence of the two
privacy protection schemes for reference.

Without loss of generality, we perform gender inference
on CelebA dataset using the proposed method in compari-
son with the gradient-based scheme of [7]. As expected, the
inference accuracy by both comparing methods decreases as
the strength of privacy protection increases but that of our pro-
posed method declines much slower. The gain of performance
is up to 35% as shown in Fig. 5, where main task is the classi-
fication task of CL. This suggests that there is still much room
for improvement of privacy defence.

4.3. Ablation Tests

We evaluate the performance of feature reconstruction in a
batch by the percentage of samples that resemble the actual



client-specific data higher than 0.95 in terms of their cosine
similarity in the deep feature space. Fig. 6 plots the results
of ablation test by feature reconstruction with and without the
data-specific gradient g,, that corresponds to the last convo-
lution block f,, of the model shown in Fig. 2. As the batch
size increases, we see that the performance drops quickly for
reconstruction without g,, by more than 70% comparing with
the proposed approach. This indicates that g,, is important by
providing additional information for reconstruction especially
with large batch size of updates.

5. CONCLUSION

In this paper, we propose a novel feature-based privacy in-
ference method that can perform several property inferences
simultaneously for individual sample in private client datasets
through gradient updates in CL. The proposed approach is ef-
fective under different scenarios without the need of sample
reconstruction at the pixel level. The inference performance
retains even in the presence of two popular privacy protection
schemes of collaborative training.
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